

令和 7 年 6 月 19 日現在

機関番号：32692

研究種目：基盤研究(C) (一般)

研究期間：2021 ~ 2024

課題番号：21K05157

研究課題名 (和文) タカキビの穀殻から得る化粧品・食品・医用フォトクロミック顔料

研究課題名 (英文) Development of photochromic pigments obtained from sorghum shells for cosmetics, foods and medical materials

研究代表者

柴田 雅史 (Shibata, Masashi)

東京工科大学・応用生物学部・教授

研究者番号：00513657

交付決定額 (研究期間全体)：(直接経費) 3,300,000 円

研究成果の概要 (和文)：タカキビの殻に含まれる3-デオキシアントシアニジン(3-DA)色素は、ポリオール溶液状態で、紫外線照射での赤色発色と、遮光条件での消色を繰り返す天然フォトクロミック溶液となり、医用・化粧品・食品・文具などでの活用が期待されている。しかしながらフォトクロミズムは溶液状態でのみ発現する。本研究では工業的活用に必要な固形状態でのフォトクロミズム発現を目指して、3-DAを多孔質粉体へと吸着させ粉体化する方法と、色素のポリオール溶液を天然物によりゲル化(固体化)する方法の2つのアプローチを検討した。その結果、カントンを用いたゲル化技術によって天然フォトクロミックゲルを得ることに成功した。

研究成果の学術的意義や社会的意義

有機フォトクロミック色素は、光記録材料、リライタブルペーパー、紫外線マーカー、意匠性色材など多方面で実用化されている。しかしながらこれら有機フォトクロミック色素は化学合成品であり、医用・化粧品・食品への使用が認められるポジティブリストには含まれておらず使用が禁じられている。また子どもの経口摂取の懸念がある文具や玩具類にもこれらの色素使うことは避けられている。今回検討をおこなった天然色素3-DAはそのような懸念がないため、製剤に配合すること、すなわち固形化ができれば上記分野への活用が可能になる。

研究成果の概要 (英文) : 3-Deoxyanthocyanidins (3-DA) extracted from sorghum husks exhibit reversible photochromism, showing red coloration under UV light and fading under dark conditions in polyol solutions. These natural photochromic systems have potential applications in medical, cosmetic, food, and stationery fields. However, such photochromism is limited to the solution state. In this study, two strategies were explored to enable photochromism in solid forms suitable for industrial use: adsorption of 3-DA onto porous powders and gelation of 3-DA/polyol solutions using natural gelling agents. As a result, a natural photochromic gel was successfully developed using agar-based gelation.

研究分野：コロイド界面化学

キーワード：フォトクロミック色素 3-デオキシアントシアニジン タカキビ 光着消色 植物色素 ポリオール ゲル化

1. 研究開始当初の背景

波長の異なる2種類の光の照射などによって色調が可逆的に変化するフォトクロミック色素は、光の照射で色が変わる意匠性顔料、リライタブルペーパー、紫外線検知材、遮光調光材などへの応用が可能である。これらの色素として、種々の合成フォトクロミック色素が検討されているが、生体への安全性の観点から使用可能な分野が限られる。例えば、これら合成色素は経口摂取したり肌へ直接塗布したりする可能性のある食品や化粧品への直接配合はできない。

一方合成色素とは異なり、植物色素であるアントシアニン色素類は、食品や化粧品への配合が可能で着色剤として実用化されている。このアントシアニン色素類の中で、イネ科のタカキビなどに含まれている3-デオキシアントシアニジン(3-DA)色素は、二環構造の3位に-OHなどの置換基をもたないという特異構造を有す。そのためアントシアニン色素類の中で例外的に水に溶解しにくく、光安定性も高いなどの特徴を有する。さらに、3-DA色素の一種であるルテオリニジンのメタノール溶液がフォトクロミック性を示すことも報告されている。

我々はこの報告を基に検討を行った結果、ルテオリニジンのみならず他の3-DA色素でもフォトクロミック性を示すこと、そしてこのフォトクロミック色素は、国産穀物であるタカキビの殻から高速液体クロマトグラフ(HPLC)によって、高純度に分離精製が可能であることを確認した。

ところで、このように食品や化粧品など高い安全性が必要な分野でも使用可能と考えられる植物由来のフォトクロミック色素3-DAではあるが、その実用化を妨げているのは、メタノール水溶液など溶液状態でのみフォトクロミズム(光着消色)が発現し、粒子状態や粒子を樹脂や油脂中に分散させた状態(ドライ条件)では発現しないことである。そのためインクジェット印刷での使用や化粧品・食品用着色剤など、実用化が望まれる製品分野での使用はできないという問題がある。

2. 研究の目的

本研究の主たる目的は、3-DA色素がドライ条件での使用を可能にすること。すなわち固形状態、複合粉体、あるいはゲル化した状態において3-DA色素のフォトクロミズムを発現させることである。そのため、色素のフォトクロミズム発現機構を明らかにし、それに基づき、固体状態でのフォトクロミック粉体を得ることを目指した。

3. 研究の方法

(1) 3-DA色素が溶液状態でしかフォトクロミズム発現しない理由をまず検討した。そして3-DA色素の光による分子形態変化(*c*-カルコン・*t*-カルコン光異性化反応)は溶液状態でしか起こらないこと。そして*c*-カルコンと*t*-カルコンは共に無色であり、光照射によって増加する*t*-カルコンと溶液中で平衡状態にあるカチオン型フラビリウムが赤色であることを確認した。つまりカチオン型フラビリウムの溶液内での増減によってフォトクロミズムが発現することが明らかになった。そこで固体状態(ドライ条件)でこの赤色の分子状態が容易に増減できる条件の探索を進めることとした。

第1の研究アプローチとして、我々はまず、多孔質粉体の細孔内に3-DA分子を適切に固定することで、固体のフォトクロミック粉体を得ることを目指した。多孔質粉体としては、身体安全性と安定性が高いシリカを中心に検討を進めた。特に細孔径や細孔形状を精密に制御できるメソ細孔シリカと細孔内の疎水性が高いソルボサーマル法(有機溶剤中の合成)で調製した非晶質シリカを中心に検討を行った。

多孔質シリカに3-DAを単純吸着させただけでは光着消色は発現しないことが既に確認されていたため、細孔内改質を行い、溶液での3-DA分子の状態に近づけていくことを目指した。具体的な細孔内改質として、細孔径・容積の制御、金属イオンをシリカ骨格に導入することで固体酸点の形成などであった。

しかしながら、これらの方針では3-DA色素の光異性化反応を起こすことが難しく、結論として、溶解状態であることが3-DA色素のフォトクロミズム発現に不可欠であることが再確認された。

(2) 第2の研究アプローチとして、多孔質粉体の細孔内に3-DA分子を直接固定化するのではなく、3-DAポリオール溶液を細孔に保持させ(吸水量以下の量で)、それにより、フォトクロミズムを発現する粉体を得る方法を検討した。この方法により、調製直後はフォトクロミズムを示す粉体の作製に成功した。しかし、しばらく保管をすると乾燥しやすい条件ではフォトクロミック性能の低下が起こり、逆に高湿度下では色素溶液が細孔外に滲出する現象が確認された。

この解決のために多孔質体の材質変更や複合体の表面処理、封孔処理などを試みたが、十分な安定性の確保には至らなかった。

(3) これらの課題を踏まえ、第3の研究アプローチとして多孔質粉体を用いる方法から、色素溶液(ポリオール)をゲル化させることで固形化させる手法へと転換した。この結果は優良であったため、次項でその詳細を説明する。

4. 研究成果

タカキビの殻に含まれる 3-デオキシアントシアニジン(3-DA)は、弱酸性緩衝液とポリオールの混合溶液に溶解させると、紫外線照射での赤色発色と、遮光条件での消色を繰り返すフォトクロミック溶液となる。着色時と消色時の色差(以下フォトクロミック性能と呼ぶ)はポリオールの種類によって大きく異なる。また最適な弱酸性緩衝液もポリオール種によって変化した。

そこで本研究では、用いるポリオールとして、溶液状態でのフォトクロミズムが最も良好に発現するジプロピレンジコール(DPG)、それよりはやや劣るものの良好であるジエチレンジコール(DEG)と1,3-ブチレンジコールの3種を用いた。そしてこれらポリオールと緩衝水溶液の混合物をゲル化するゲル化剤の候補として、天然ゲル化剤であるアルギン酸ナトリウムと-カラギーナン、カンテンを用いた。弱酸性緩衝水溶液はpH4.0を中心に適宜変更して用いた。

ゲル化剤の調製はそのゲル化機能に基づき行った。アルギン酸ナトリウムでは、ポリオールと任意量のイオン交換水を室温で混合させ、これに塩化カルシウム水溶液を加え、5℃で冷却保存することでゲルを得た。-カラギーナンではポリオール・イオン交換水混合物とスクロースを加熱混合させ5℃で冷却保存することでゲルを得た。カンテンではポリオール・イオン交換水混合物を加熱混合させ5℃で冷却保存することでゲルを得た。

まずゲル化剤の必要条件として、ポリオールを混合してもゲル化が可能であること(分離しない)、2%程度の配合で自立できる程度のゲルを維持できること。そしてある程度の透明性を有していることの3条件とした。

アルギン酸ナトリウムは、ポリオール混合系ではゲル化能が低いゲルであった。-カラギーナンは、溶液中のDPG濃度10%程度でのゲル化は可能であったが、それ以上DPG濃度が高まるとゲル化能は低くなった。DPG濃度は40%以上は必要であることから、これもゲル化剤として不適であった。一方、カンテンは、DPGの配合量が増加するにつれてゲル硬度の上昇が見られ、50%で最大となった。これは溶剤の有機性が高まるにつれ分子化の相互作用が高まることによるものと考えられた。ただし60%以上の配合では、カンテンのゲルと溶液が分離する傾向が観察された。よって、色素溶液の主成分であるDPGを多く含むことができるカンテンがゲル化剤として最適であると結論づけた。また、ポリオール種をDEG、BGに変更した場合も、ゲル硬度にある程度の差は生じたものの、実用上は問題のないゲルが調製できた。

DPGを含むカンテンゲルの組成物に、3-DA色素抽出液を10%混合させたフォトクロミックゲルを調製した。5℃での遮光保存後と室温でのUV-A照射15分後の可視吸光度比(フォトクロミック性能)を評価したところ、ゲルはUV照射によって赤色を呈し、遮光条件では薄いオレンジ色へと消色した(図1)。

続いて、溶剤として用いるポリオール種とフォトクロミック性能の関係を調べた。溶液の場合はDPGが最も優れた性能を示したが、ゲルの場合はDPG、DEG、BGのフォトクロミック性能は同程度を示した。さらに緩衝液pHについて検討を行った結果、溶液状態ではpH4.0のフォトクロミック性能が最適であったのに対して、ゲル状態ではpH3.0のフォトクロミック性能が最も良好となった。以上のことから、フォトクロミックゲルの最適組成には、カンテン2%、pH3.0緩衝液40%、色素抽出液10%、ポリオールはDPG、BG、DEGのいずれも使用可能であることがわかった。

第2の研究アプローチである、3-DAポリオール溶液を細孔に保持させ、それにより、フォトクロミズムを発現する粉体を得る方法では、乾燥によるフォトクロミック性能の低下および高湿度下で色素溶液が細孔外に滲出する現象が問題となった。この点については、カンテンを用いたゲルは乾燥状態に置くと水分の蒸発によってゴムのような性状に変化したが、フォトクロミック性能の低下はおこらなかった。逆に高湿度下にゲルを置いた場合は、外観上色素の滲出は見られず、フォトクロミック性能の低下も認められなかった。すなわち広範囲の湿度条件において、実用上問題のない安定性を有することが明らかとなった。

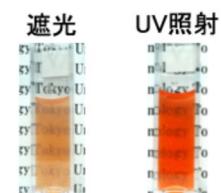


図1 フォトクロミックゲルの外観

5. 主な発表論文等

[雑誌論文] 計1件 (うち査読付論文 1件 / うち国際共著 1件 / うちオープンアクセス 1件)

1. 著者名 Miki AKATSUKA, Kumiko TASAKI, Yoshiumi KOHNO, Masashi SHIBATA	4. 巻 96
2. 論文標題 Relationship between Solvent Composition Shifts of Plant-Derived Photochromic Solutions and their Photochromic Performance	5. 発行年 2023年
3. 雑誌名 Journal of the Japan Society of Colour Material	6. 最初と最後の頁 113-117
掲載論文のDOI(デジタルオブジェクト識別子) 10.4011/shikizai.96.113	査読の有無 有
オープンアクセス オープンアクセスとしている(また、その予定である)	国際共著 該当する

[学会発表] 計7件 (うち招待講演 0件 / うち国際学会 1件)

1. 発表者名 安間美宥、河野芳海、柴田雅史
2. 発表標題 タカキビの殻から抽出したアントシアニジン色素を含有した植物由来フォトクロミックゲル
3. 学会等名 第75回コロイドおよび界面化学討論
4. 発表年 2024年

1. 発表者名 木嶋瑞葵、柴田雅史
2. 発表標題 フラボノイドとの複合化における多孔質シリカの細孔構造が吸着に与える影響
3. 学会等名 第75回コロイドおよび界面化学討論
4. 発表年 2024年

1. 発表者名 木嶋瑞葵、伊澤千尋、柴田雅史
2. 発表標題 メソポーラスシリカへのポリメトキシフラボノイドの吸着及び溶出特性
3. 学会等名 2023年色材研究発表会
4. 発表年 2023年

1. 発表者名 西條沙良、伊澤千尋、柴田雅史
2. 発表標題 溶解度制御によるUV吸収剤フェルラ酸のメソポーラスシリカへの吸着向上
3. 学会等名 中部化学関係学協会支部連合 第54回秋季大会
4. 発表年 2023年

1. 発表者名 Miki Akatsuka, Yoshiumi Kohno, Masashi Shibata
2. 発表標題 Solvent composition changes in plant-derived photochromic solutions with time and their influence on photochromic performance
3. 学会等名 95th JSCM Anniversary Conference (国際学会)
4. 発表年 2022年

1. 発表者名 赤塚美希、田崎久美子、河野芳海、柴田雅史
2. 発表標題 タカキビから抽出した 3-デオキシアントシニンジン色素のフォトクロミズムに与える各種イオンの影響
3. 学会等名 2021年度色材研究発表会
4. 発表年 2021年

1. 発表者名 野々村英介、伊澤千尋、柴田雅史
2. 発表標題 メソポーラスシリカ・フラボノイド複合体の調製における界面活性剤の効果と紫外線防御剤としての性能
3. 学会等名 2021年度色材研究発表会
4. 発表年 2021年

〔図書〕 計0件

〔産業財産権〕

〔その他〕

6. 研究組織

	氏名 (ローマ字氏名) (研究者番号)	所属研究機関・部局・職 (機関番号)	備考

7. 科研費を使用して開催した国際研究集会

〔国際研究集会〕 計0件

8. 本研究に関連して実施した国際共同研究の実施状況

共同研究相手国	相手方研究機関